An Improved Approximation Algorithm for the Complementary Maximal Strip Recovery Problem

نویسندگان

  • Zhong Li
  • Randy Goebel
  • Lusheng Wang
  • Guohui Lin
چکیده

Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G ∗ 2, can be partitioned into the same set of maximal strips, which are common substrings of length greater than or equal to two. The complementary maximal strip recovery (CMSR) problem has the complementary goal to delete the minimum number of markers. Both MSR and CMSR have been shown NP-hard and APX-complete, and they admit a 4-approximation and a 3-approximation respectively. In this paper, we present an improved 7 3 -approximation algorithm for the CMSR problem, with its worst-case performance analysis done through a sequential amortization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and approximation algorithms for the complementary maximal strip recovery problem

Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G∗ 2 , can be partitioned into the same set of maximal substrings of length greater than or equal to two. Such substrings can occur in the reversal and n...

متن کامل

A Linear Kernel for the Complementary Maximal Strip Recovery Problem

In this paper, we compute the first linear kernel for the complementary problem of Maximal Strip Recovery (CMSR) — a well-known NP-complete problem in computational genomics. Let k be the parameter which represents the size of the solution. The core of the technique is to first obtain a tight 18k bound on the parameterized solution search space, which is done through a mixed global rules and lo...

متن کامل

Tractability and Approximability of Maximal Strip Recovery

An essential task in comparative genomics is usually to decompose two or more genomes into synteny blocks, that is, segments of chromosomes with similar contents. In this paper, we study the Maximal Strip Recovery problem (MSR) [Zheng et al. 07], which aims at finding an optimal decomposition of a set of genomes into synteny blocks, amidst possible noise and ambiguities. We present a panel of n...

متن کامل

Inapproximability of Maximal Strip Recovery: II

In comparative genomic, the first step of sequence analysis is usually to decompose two or more genomes into syntenic blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed by Zheng, Zhu, and Sankoff for reliably recoveri...

متن کامل

On the Tractability of Maximal Strip Recovery

Given two genomic maps G and H represented by a sequence of n gene markers, a strip (syntenic block) is a sequence of distinct markers of length at least two which appear as subsequences in the input maps, either directly or in reversed and negated form. The problem Maximal Strip Recovery (MSR) is to find two subsequences G' and H' of G and H, respectively, such that the total length of disjoin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011